B. Tech III Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA

19AME51 - THERMAL ENGINEERING

 \mathbf{T} \mathbf{L} P \mathbf{C} 3 0 3

Course Objectives: The objectives of the course are to make the students learn about

- To familiarize the developments in IC engines.
- To teach combustion process in SI and CI engines.
- To introduce different types of compressors.
- To familiarize concepts of thermodynamics cycles used in steam power plants and gas turbines
- To impart knowledge on the working of nozzles, turbines, refrigeration and air conditioning.

UNIT – 1: IC Engines

10 Hrs

IC Engines: Working and classification of IC engines, comparison of two stroke and four stroke engines, comparison of SI and CI Engines.

Combustion in IC Engines: SI engine: stages of combustion, normal combustion, abnormal combustion, variables effecting delay period and knocking, pre-ignition. CI engine: stages of combustion, normal combustion, abnormal combustion, variables effecting delay period and knocking. Fuel requirements and fuel rating.

Testing and Performance of IC Engines: Methods of testing IC Engines, performance analysis of IC Engines.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand working of IC engines on the basis of thermodynamic cycles. L2 Estimate engine performance. L5
- Identify the effects of abnormal combustion in IC engines.

L3

UNIT – II: Classification of Air compressors

8 Hrs

Reciprocating Compressor: Single stage reciprocating compressors, work done, effect of clearance in compressors, volumetric efficiency, multi stage compressor, effect of inter cooling in multi stage compressors, compressor performance.

Rotary Compressor: Working principle of a rolling piston type compressor (fixed vane type), multi vane type compressors, characteristics of rotary vane type compressor.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify different types of air compressors. L2
- Compare the performance of different types of air compressors

L2

UNIT – III: Vapour Power Cycles & Gas power Cycle

8 Hrs

Vapour Power Cycles: Vapour power cycle, simple Rankine cycle, mean temp of heat addition thermodynamic variables effecting efficiency and output of Rankine cycle

Gas power Cycle: Simple gas turbine plant, Brayton cycle, closed cycle and open cycle for gas turbines, condition for maximum pressure ratio and optimum pressure ratio, actual cycle. Methods to improve performance: regeneration, intercooling and reheating. Introduction to jet propulsion: working principle of ramjet, turbojet, turbofan, turboprop and pulse jet engines,

> Mechanical Engineering Department, JNTUA College of Engineering, PULIVENDULA - 516 390.

Department of Mechanical Engineering	R19
Learning Outcomes:	
At the end of this unit, the student will be able to	
 Explain concepts of vapour power cycle used in steam power plant. 	L2
Evaluate the cycles used in gas turbine	L5
Outline the jet propulsion system.	L2
UNIT – IV: Nozzles & Steam Turbines	10 Hrs
Nozzles: Type of nozzles - air and steam nozzles. Compressible flow through nozzle- cor	dition for
maximum discharge - nozzle efficiency.	
Steam Turbines: Classification of steam turbines -impulse turbine and reaction	turbine -
compounding in turbines - velocity diagrams in impulse and reaction turbines, efficiency,	
reaction - governing of turbines.	##B100 01
Learning Outcomes: At the end of this unit, the student will be able to	
Compare the performance of nozzles, used in turbines.	L2
 Classify steam turbines and applications. 	L4
Analyze the performance of steam turbines under different operating conditions.	L5
UNIT – V: Refrigeration	8 Hrs
Refrigeration: Bell-Coleman cycle - vapour compression cycle, effect of vapour condition	n on COP
of VCR, - vapour absorption cycle, properties of common refrigerants	
Principles of Psychrometry and Air Conditioning: Psychometric terms, psychometric	nrocesses
and air conditioning systems.	processes
Learning Outcomes:	
At the end of this unit, the student will be able to	
• Outline the operation of refrigerators.	L2
Identify different refrigerants and applications.	L3
 Use properties of moist air in calculations for air-conditioning system. 	L3
Text Books:	
1. Ganesan V, Internal Combustion Engines, Tata McGraw Hill, 2017.	
2. M.L.Mathur and F.S.Mehta, Thermal Engineering, Jain brothers, 2014.	
3. K.K.Ramalingam, Thermal Engineering, 2/e, Scitech Publications (India) Pvt Ltd,2	.011
Reference Books:	
1. Cengal Y.A and Boles M.A, Thermodynamics: An Engineering Approach, 5/e,	McGraw
Hill, 2006.	Nicolaw
2. Yahya, S. M., Turbines, Compressors and Fans, 4/e, Tata McGraw Hill, 2010.	
3. Nag P.K, Engineering Thermodynamics, 4/e, Tata McGraw-Hill, 2008.	
4. Onkar Singh, Thermal Turbomachines, 3/e, Wiley India, 2014.	
5. P.L.Ballaney, Thermal Engineering, 2/e, Khanna, 2005.	
Course Outcomes:	
At the end of this Course the student will be able to	
 Explain working of IC engines with combustion process. 	L2
Calast assurances on different analisations	T 1

we

Select compressors for different applications.

Explain the basic principles of steam turbines.

Explain the basic principles of steam turbines.

Use T-s diagram in vapour power and gas power cycles.

Select appropriate refrigerant for different applications

Page 2 of 2

L1 L3

L2 L2

L1